Know Ball Bearings

Bearing Nomenclature

You can learn a lot about a bearing just from its part number.
A typical bearing is the 6203ZZ bearing. This part number can be divided into it's components:
6203ZZ
which means:
  • Type Code
  • Series
  • Bore
  • Suffix
The type code indicates the type of bearing. While each manufacturer uses their own numbers, there are a few numbers that could be considered standard in the industry.
1Self-Aligning Ball Bearing
This kind of ball bearing has a spherical outer race, allowing the axis of the bearing to "wander around". This is important because misalignment is one of the big causes of bearing failure.
2Spherical Roller Bearing
3Double-Row Angular Contact Ball Bearing
Designed to take axial as well as radial loads.
4Double-Row Ball Bearing
Designed for heavy radial loads.
5Thrust Ball Bearing
Intended for exclusively axial loads.
6Single-Row Deep Groove Ball Bearing
Typical ball bearing. Handles light axial loads as well as radial loads.
7Single-Row Angular Contact Bearing
For axial (one direction only!) as well as radial loads.
8Felt Seal
To assure that the entire inside edge of the seal touches the inner ring, the inner ring is enlarged. If a bearing of more normal proportions is required, the outer ring is also enlarged, and the bearing is referred to as a "wide cup" bearing.
32Tapered Roller Bearing
This is the kind of wheel bearings used in cars. The rollers are not cylindrical, but conical. They handle large raidal and axial loads.
RInch (Non-Metric) BearingVaries
NCylindrical Roller Bearing
Instead of balls, cylindrical rollers are used. These bearings can handle much more radial load, but can handle much less axial load, than ball bearings.
NNDouble-Row Roller Bearing
Handles greater radial loads than standard cylindrical roller bearings.
NANeedle Roller Bearing
Needle bearings are basically roller bearings, but the rollers are much smaller, making the bearing more compact.
Varies
Type 6, "single-row deep groove", is perhaps the most common type of bearing.
If the bearing is an inch bearing (the first digit in the number is an R), then the size is the digit or digits immediately following the R, in 16ths of an inch. An R8-2RS bearing, for example, has an 8/16th or 1/2 inch bore.
If the first digit is a number, however, it is a metric bearing, and the second digit is the series, which reflects the robustness of the bearing. The series are, from lightest to heaviest:
8Extra thin section
9Very thin section
0Extra light
1Extra light thrust
2Light
3Medium
4Heavy
Yes, they go in that order. Gotta keep things simple, you know.
Each of these series also establishes a relationship between the bore size, outer diameter, and thickness of the bearing, in accordance with ISO standards. I have no idea what they are.
The third and fourth digits indicate the bore size in millimeters. Except for 0 through 3, the bore size is simply five times the third and fourth digits together. 0 through 3, however, are different:
0010mm
0112mm
0215mm
0317mm
If there is no fourth digit - for example, a 608 bearing, a common roller skate bearing - then the size is the last digit in millimeters.
The last letters indicate something special about the bearing. For example:
ZSingle shielded
ZZDouble shielded
RSSingle sealed
2RSDouble sealed
VSingle non-contact seal
VVDouble non-contact seal
DDUDouble contact seals
NRSnap ring and groove
MBrass cage
And then there are the completely off-the-wall bearing numbers, like 499502H. I have no idea what that number is supposed to mean, but it applies to what is basically an R10-2RS bearing, only a bit thicker and with a groove and snap ring.

Examples

Common Skate Bearings

NumberBore
(mm)
O.D.
(mm)
Width
(mm)
6088227
6277227
6888164
6988196
All these bearing numbers start with 6, which tells us they're Single-row deep groove ball bearings. The second digits tell us the robustness of the bearings. The last two, in series 8 and 9, are very thin and lightweight bearings, while the first, in series 0, is an "extra light" bearing without being abnormally thin. The third bearing, in series 2, is the most robust of all, being merely "light".

Light vs Heavy Comparison

Consider the following three bearings:
NumberBore
mm
O.D.
mm
Thickness
mm
6010-2RS508016
6210-2RS509020
6310-2RS5011027
We can see from the part numbers that they're all 50mm single-row deep groove ball bearings. However, we can also see that they're each a different series; specifically, Extra Light, Light, and Medium. Compare the O.D. and thickness of each bearing, and you can see how the Extra Light bearing (series 0) is the smallest, and the Medium Bearing (series 3) is the largest. The larger bearing can take much more load than the smaller bearing, though how much depends on the manufacturer and the RPM the bearing is run at.
NumberBore
mm
O.D.
mm
Thickness
mm
6904-2RS20379
6004-2RS204212
6204-2RS204714
6304-2RS205215
These are all 20mm single-row deep groove ball bearings of different series. The first, of series 9, is a "very thin section" bearing, meaning it is much thinner than usual - it is only 25% as thick as its O.D., while the others are approximately 30% as thick as their O.D.

Common Bearing Dimensions

Extra Light Bearings

NumberBore
mm
O.D.
mm
Thickness
mm
6000-2RS10268
6001-2RS12288
6002-2RS15329
6003-2RS173510
6004-2RS204212
6005-2RS254712
6006-2RS305513
6007-2RS356214
6008-2RS406815
6009-2RS457516
6010-2RS508016
6011-2RS559018
6012-2RS609518
6013-2RS6510018
6014-2RS7011020
6015-2RS7511520

Light Bearings

NumberBore
mm
O.D.
mm
Thickness
mm
6200-2RS10309
6201-2RS123210
6202-2RS153511
6203-2RS174012
6204-2RS204714
6205-2RS255215
6206-2RS306216
6207-2RS357217
6208-2RS408018
6209-2RS458519
6210-2RS509020
6211-2RS5510021
6212-2RS6011022
6213-2RS6512023
6214-2RS7012524
6215-2RS7513025
6216-2RS8014026

Medium Bearings

NumberBore
mm
O.D.
mm
Thickness
mm
6301-2RS123712
6302-2RS154213
6303-2RS174714
6304-2RS205215
6305-2RS256217
6306-2RS307219
6307-2RS358021
6308-2RS409023
6309-2RS4510025
6310-2RS5011027

Inch Bearings

NumberBore
inch
O.D.
inch
Thickness
inch
SR3-2RS0.18750.50000.1960
R4-2RS0.25000.62500.1960
R4A-2RS0.25000.75000.2813
R6-2RS0.37500.87500.2813
R8-2RS0.50001.12500.3125
R10-2RS0.62501.37500.3438
R12-2RS0.75001.62500.4375
R14-2RS0.87501.87500.5000
R16-2RS1.00002.00000.5000
R20-2RS1.25002.25000.5000
1601-2RS0.18750.68750.3125
1602-2RS0.25000.68750.3125
1605-2RS0.31250.90630.3125
1603-2RS0.31250.87500.3438
1604-2RS0.37500.87500.3438
1614-2RS0.37501.12500.3750
1606-2RS0.37500.90630.3125
1615-2RS0.43751.12500.3750
1607-2RS0.43750.90630.3125
1620-2RS0.43751.37500.4375
1616-2RS0.50001.12500.3750
1621-2RS0.50001.37500.4375
1633-2RS0.62501.75000.5000
1623-2RS0.62501.37500.4375
1638-2RS0.75002.00000.5625
1630-2RS0.75001.62500.5000
1641-2RS1.00002.00000.5625
1652-2RS1.12502.50000.6250
1658-2RS1.31252.56250.6875

Other Stuff

Ever wonder how they assemble ball bearings? There are two ways.
The typical ball bearing, called a Conrad bearing. There is enough space between the balls that if they're all pushed over to one side, the inner ring can be pushed to the opposite side, into the space left by moving the balls. This increases the space on the side where the balls are, letting them be removed. The bearing cage usually keeps the balls evenly spaced so this doesn't happen by accident.

Conrad Type Bearing Assembly
The other kind of ball bearing is called a maximum capacity bearing, and has a special notch cut in the side of the rings, into which the balls are placed during assembly. As a result of this notch, the axial loads this kind of bearing can take are quite small, and must be in combination with a large radial load. However, the increased number of balls that can be fit into the bearing means the maximum capacity type bearing can handle a larger radial load.

Maximum Capacity Bearing

Design Life

The design life of a bearing depends on rated load and the equivalent radial load.
Deep Groove: L10 = (C/P)n
The rated load, C, is the load at which 10% of bearings fail after one million revolutions. The manufacturer will provide this number. One million revolutions may sound like a lot, but it's not. A car engine typically has one million revolutions on it after only eight hours.
The equivalent load, P, is a combination of axial load and radial load, times some factor to account for shock loading, acceptable noise levels, lubrication quality, cleanliness, speed, temperature, etc. Calculating it can be a pain.
The exponent, n, is 3 for radial bearings, and 3.33 for thrust bearings. This large an exponent means that doubling the load on a bearing will decrease its life by a factor of eight or ten, depending on the type of bearing. Don't overload your bearings!
The formula for calculating equivalent load is
P = (XFr + YFa) × s
where Fr is actual radial load, Fa is actual axial load, X is the static radial factor, and Y is the static axial factor, and s is the service factor, which varies from 1 on up. If Fa is zero (no axial load) you can ignore all this folderol, and P = Fr. Likewise, if Fr is zero (no radial load), then P = Fa.
Calculating X and Y is so complicated that I avoid it when I can - by using separate thrust and radial bearings, by assuming X is 1 and Y is 3 (values which far exceed anything realistic), or by using software. SKF has an online bearing calculator here.
If you really want to try calculating X and Y, start here.